
  

Turing Machines
Part Two



  

Outline for Today

● The Church-Turing Thesis
● How powerful are Turing machines?

● Decidability and Recognizability
● Two notions of “solving a problem.”

● Universal Machines
● A single computer that can compute anything 

computable anywhere.
● Self-Referential Software

● Programs that compute on themselves.



  

The Church-Turing Thesis claims that

every effective method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams
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Decidability and Recognizability



  

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M loops infinitely (or just loops) on a string w if when run on w 
it neither returns true nor returns false.

● M does not accept w if it either rejects w or loops on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept                                     

does not reject                               

halts



  

● A TM M is called a recognizer for a language L 
over Σ if the following statement is true:

∀w ∈ Σ*. (w ∈ L  ↔  M accepts w)
● If you are absolutely certain that w ∈ L, then 

running a recognizer for L on w will (eventually) 
confirm this.
● Eventually, M will accept w.

● If you don’t know whether w ∈ L, running M on w 
may never tell you anything.
● M might loop on w – but you can’t differentiate between 

“it’ll never give an answer” and “just wait a bit more.”
● Does that feel like “solving a problem” to you?

Recognizers and Recognizability



  

Recognizers and Recognizability

● The class RE consists of all recognizable languages.
● Formally speaking:

RE = { L | L is a language and there’s a recognizer for L }
● You can think of RE as “all problems with yes/no 

answers where “yes” answers can be confirmed by a 
computer.”
● Given a recognizable language L and a string w ∈ L, running a 

recognizer for L on w will eventually confirm w ∈ L.
● The recognizer will never have a “false positive” of saying 

that a string is in L when it isn’t.
● This is a “weak” notion of solving a problem.
● Is there a “stronger” one?



  

Deciders and Decidability

● Some, but not all, TMs have the following 
property: the TM halts on all inputs.

● If you are given a TM M that always halts, then 
for the TM M, the statement “M does not 
accept w” means “M rejects w.”

Accept

Reject
                          halts (always)

does not accept                                   

does not reject                                   



  

Deciders and Decidability

● A TM M is called a decider for a language L over Σ 
if the following statements are true:

∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L   ↔   M accepts w)
● In other words, M accepts all strings in L and 

rejects all strings not in L.
● In other words, M is a recognizer for L, and M halts 

on all inputs.
● If you aren’t sure whether w ∈ L, running M on w 

will (eventually) give you an answer to that 
question.



  

Deciders and Decidability

● The class R consists of all decidable languages.
● Formally speaking:

R = { L | L is a language and there’s a decider for L }
● You can think of R as “all problems with yes/no 

answers that can be fully solved by computers.”
● Given a decidable language, run a decider for L and see what 

happens.
● Think of this as “knowledge creation” – if you don’t know 

whether a string is in L, running the decider will, given 
enough time, tell you.

● The class R contains all the regular languages, all the 
context-free languages, most of CS161, etc.

● This is a “strong” notion of solving a problem.



  

R and RE Languages

● Every decider for L is also a recognizer for L.
● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to 

a problem, can you necessarily solve that 
problem?



  All Languages
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Which Picture is Correct?

Regular
Languages
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Strings, Languages, and Encodings



  

What problems can we solve with a computer?

What is a 
“problem?”



  

Decision Problems

● A decision problem is a type of problem where the 
goal is to provide a yes or no answer.

● Example: Bin Packing

You're given a list of patients who need to be seen and 
how much time each one needs to be seen for. You're 

given a list of doctors and how much free time they have. 
Is there a way to schedule the patients so that they can 

all be seen?
● Example: Dominating Set Problem

You're given a transportation grid and a number k. Is 
there a way to place emergency supplies in at most k 

cities so that every city either has emergency supplies or 
is adjacent to a city that has emergency supplies?
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A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool someFunctionName(string input) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isAnBn(string input) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isPalindrome(string input) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isLinkageGraph(Graph G) {

    // … do something …

}

How does this
match our model?



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool containsCat(Picture P) {

    // … do something …

}

How does this
match our model?



  

Humbling Thought:
Everything on your computer is a 

string over {0, 1}.



  

Strings and Objects

● Think about how 
my computer 
encodes the image 
on the right.

● Internally, it's just 
a series of zeros 
and ones sitting on 
my hard drive.



  

Strings and Objects

● A different sequence 
of 0s and 1s gives rise 
to the image on the 
right.

● Every image can be 
encoded as a 
sequence of 0s and 1s, 
though not all 
sequences of 0s and 1s 
correspond to images.



  

Object Encodings

● If Obj is some mathematical object that is discrete and 
finite, then we’ll use the notation ⟨Obj⟩ to refer to some 
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a file on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute something 
about Obj, you can provide the string ⟨Obj⟩ as input to that 
Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any 
alphabet, we can always find a way of encoding things.

We'll assume we can perform “reasonable” operations on 
encoded objects.

⟨ ⟩ = 110111001011…110



  

Object Encodings

● If Obj is some mathematical object that is discrete and 
finite, then we’ll use the notation ⟨Obj⟩ to refer to some 
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a file on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute something 
about Obj, you can provide the string ⟨Obj⟩ as input to that 
Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any 
alphabet, we can always find a way of encoding things.

We'll assume we can perform “reasonable” operations on 
encoded objects.

⟨ ⟩ = 001101010001…001



  

Object Encodings

● For the purposes of what we’re going to be doing, 
we aren’t going to worry about exactly how objects 
are encoded.

● For example, we can say ⟨137⟩ to mean “some 
encoding of 137” without worrying about how it’s 
encoded.
● Analogy: do you need to know how numbers are 

represented in Python to be a Python programmer? 
That’s more of a CS107 or CS41 question.

● We’ll assume, whenever we’re dealing with 
encodings, that some Smart, Attractive, Witty 
person has figured out an encoding system for us 
and that we’re using that encoding system.
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A Model for Solving Problems

Yep

Nah
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(possibly
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bool containsCat(Picture P) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool isLinkageGraph(Graph G) {

    // … do something …

}



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool isDominatingSet(Graph G, Set D) {

    // … do something …

}
How does this

match our model?



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

    // … do something …

}
How does this

match our model?



  

Encoding Groups of Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, 
we can create a single string encoding all 
these objects.
● Intuition 1: Think of it like a .zip file, but 

without the compression.
● Intuition 2: Think of it like a tuple or struct.

● We'll denote the encoding of all of these 
objects as a single string by ⟨Obj₁, …, Objₙ⟩.



  

A Model for Solving Problems

Yep

Nah
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input

(possibly
multiple
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bool matchesRegex(string w, Regex R) {

    // … do something …

}
These form one
large bitstring.



  

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
multiple
distinct
values)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

    // … do something …

}
These form one
large bitstring.



  

What problems can we solve with a computer?



  

Time-Out for Announcements!



  

Problem Set Five Graded

● Your diligent and hardworking TAs have 
finished grading PS5. Grades and feedback 
will be available on Gradescope later today.

● As always, please review your feedback! 
Knowing where to improve is more 
important than just seeing a raw score.

● Did we make a mistake? Regrades on 
Gradescope will open tomorrow and are due 
in one week.



  

Remaining Problem Sets

● Problem Set 6 will be due on Friday at 
5:30 PM. 

● Problem Set 7 (our final problem set!) 
will be out on Friday at 6:00 PM and will 
be due Wednesday, August 14th at 5:30 
PM.
● This assignment will be shorter since you 

don’t have a full week to work on it.



  

Final Exam

● If you have exam accommodations, you 
will receive an email from Anthony later 
today with your arrangement. Please 
reach out if you don’t receive it.

● Next Wednesday’s lecture will be a 
review session



  

Back to CS103!



  

Emergent Properties



  

Emergent Properties

● An emergent property of a system is a 
property that arises out of smaller pieces that 
doesn't seem to exist in any of the individual 
pieces.

● Examples:
● Individual neurons work by firing in response to 

particular combinations of inputs. Somehow, this 
leads to consciousness, love, and ennui.

● Individual atoms obey the laws of quantum 
mechanics and just interact with other atoms. 
Somehow, it's possible to combine them together to 
make iPhones and pumpkin pie.



  

Emergent Properties of Computation

● All computing systems equal to Turing machines 
exhibit several surprising emergent properties.

● If we believe the Church-Turing thesis, these 
emergent properties are, in a sense, “inherent” to 
computation. Computation can’t exist without 
them.

● These emergent properties are what ultimately 
make computation so interesting and so powerful.

● As we'll see, though, they're also computation's 
Achilles heel – they're how we find concrete 
examples of impossible problems.



  

Two Emergent Properties

● There are two key emergent properties of 
computation that we will discuss:
● Universality: There is a single computing device 

capable of performing any computation.
● Self-Reference: Computing devices can ask 

questions about their own behavior.
● As you'll see, the combination of these 

properties leads to simple examples of 
impossible problems and elegant proofs of 
impossibility.



  

Universal Machines



  

An Observation

● Think about how you interact with your physical 
computer.
● You have a single, physical computer.
● That computer then runs multiple programs.

● Contrast that with how we’ve worked with TMs.
● We have a TM for { anbn | n ∈ ℕ }. That TM will always 

perform that calculation and never do anything else.
● We have a TM for the hailstone sequence. That TM can’t 

compose poetry, write music, etc.
● How do we reconcile this difference?



  

Can we make a “reprogrammable
Turing machine?”



   

A TM Simulator

● It is possible to program a TM simulator on an unbounded-
memory computer.
● You’ve seen this in class.

● We could imagine it as a method

  bool simulateTM(TM M, string w)

with the following behavior:
● If M accepts w, then simulateTM(M, w) returns true.
● If M rejects w, then simulateTM(M, w) returns false.
● If M loops on w, then simulateTM(M, w) loops infinitely.

true!

false!
 

simulateTM

(loop)

...input...w

M

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …



    

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …



    

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

● This means that there must be some TM 
that has the behavior of this simulateTM 
method.

simulateTM

true!

false!

(loop)

...input...

M

w

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …



    

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

● This means that there must be some TM 
that has the behavior of this simulateTM 
method.

● What would that look like?

simulateTM

true!

false!

(loop)

...input...

M

w

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …



   

 

 Tern:
   If Blank Goto Heron
   Write 'q'
   Move Right
   …

 

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

● This means that there must be some TM 
that has the behavior of this simulateTM 
method.

● What would that look like?

accept!

reject!

(loop)

...input...

M

w
TM that runs 

other TMs

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …



   

 

 Tern:
   If Blank Goto Heron
   Write 'q'
   Move Right
   …

 

A TM Simulator

● It is known that anything that can be done 
with an unbounded-memory computer can 
be done with a TM.

● This means that there must be some TM 
that has the behavior of this simulateTM 
method.

● What would that look like?

...input...

M

w Universal TM

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …

accept!

reject!

(loop)



    

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the 
universal Turing machine that, when run on an input of the form 
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M 
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of U TM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

 

 Tern:
   If Blank Goto Heron
   Write 'q'
   Move Right
   …

TM

...input...

M

w Universal TM

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …

accept!

reject!

(loop)

UTM does to ⟨M, w⟩
 

what
 

M does to w.



  

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

…   accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and 

…   loop on ⟨M, w⟩ if M loops on w.
● Although we didn’t design UTM as a recognizer, it 

does recognize some language.

● Which language is that?



  

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

…   accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and 

…   loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the 
universal TM UTM. This means that

∀x ∈ Σ*. (UTM accepts x  ↔  x ∈ ATM)



  

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

…   accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and 

…   loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the 
universal TM UTM. This means that

∀M. ∀w ∈ Σ*. (UTM accepts ⟨M, w⟩  ↔  ⟨M, w⟩ ∈ ATM)



  

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

…   accept ⟨M, w⟩ if M accepts w,

…   reject ⟨M, w⟩ if M rejects w, and 

…   loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the
universal TM UTM. This means that

∀M. ∀w ∈ Σ*. (M accepts w  ↔  ⟨M, w⟩ ∈ ATM)

● So we have

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }



  

The Language ATM

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }
● Here’s a complicated expression. Can you 

simplify it?

⟨UTM, ⟨M, w⟩⟩ ∈ ATM.

● Given the definition of ATM and UTM, the following 
statements are all equivalent to one another.
● M accepts w.
● UTM accepts ⟨M, w⟩.
● ⟨M, w⟩ ∈ ATM.



    All Languages

RE

A
TM

Regular
Languages



  

Uh… so what?



  

Reason 1: It has practical consequences.



  

Why Does This Matter?

● The existence of a universal Turing machine has both 
theoretical and practical significance.

● For a practical example, let's review this diagram from 
before.

● Previously we replaced the computer with a TM. (This 
gave us the universal TM.)

● What happens if we replace the TM with a computer 
program?

 

true!

false!
 

simulateTM

(loop)

M

...input...w

 

 Auk:
   Move Left
   Write 'k'
   Goto Moa
   …



  

Why Does This Matter?

● The existence of a universal Turing machine has both 
theoretical and practical significance.

● For a practical example, let's review this diagram from 
before.

● Previously we replaced the computer with a TM. (This 
gave us the universal TM.)

● What happens if we replace the TM with a computer 
program?

 

true!

false!
 

simulateProgram

(loop)

...input...w

for (int i = 2;
    i < n; i++) {
   if (n % i == 0)
     …
}

code



   

true!

false!
 

simulateProgram

(loop)

...input...w

for (int i = 2;
    i < n; i++) {
   if (n % i == 0)
     …
}

code

● We now have a computer program that runs other computer 
programs!
● An interpreter is a program that simulates other programs. Python 

programs are usually executed by interpreters. Your web browser 
interprets JavaScript code when it visits websites.

● A virtual machine is a program that simulates an entire operating 
system. Virtual machines are used in computer security, cloud 
computing, and even by individual end users.

● It’s not a coincidence that this is possible – Turing’s 1936 paper 
says that any general-purpose computing system must be able to 
do this!

Why Does This Matter?



    

Why Does This Matter?

● The key idea behind the universal TM is that 
idea that TMs can be fed as inputs into other 
TMs.
● Similarly, an interpreter is a program that takes 

other programs as inputs.
● Similarly, an emulator is a program that takes entire 

computers as inputs.

● This hits at the core idea that computing 
devices can perform computations on other 
computing devices.



  

Reason 2: It’s philosophically interesting.



  

Can Computers Think?

● On May 15, 1951, Alan Turing delivered 
a radio lecture on the BBC on the 
topic of whether computers can think.

● He had the following to say about 
whether a computer can be thought of as 
an electric brain...

http://www.turingarchive.org/browse.php/B/5


  

“In fact I think [computers] could be used in such a manner that they could be 
appropriately described as brains. I should also say that

‘If any machine can be appropriately described as a brain,
then any digital computer can be so described.’

This last statement needs some explanation. It may appear rather startling, 
but with some reservations it appears to be an inescapable fact.

It can be shown to follow from a characteristic property of digital computers, 
which I will call their universality. A digital computer is a universal machine 
in the sense that it can be made to replace any machine of a certain very wide 
class. It will not replace a bulldozer or a steam-engine or a telescope, but it 
will replace any rival design of calculating machine, that is to say any machine 
into which one can feed data and which will later print out results. In order to 
arrange for our computer to imitate a given machine it is only necessary to 
program the computer to calculate what the machine in question would do 
under given circumstances, and in particular what answers it would print out. 
The computer can then be made to print out the same answers.

If now some machine can be described as a brain we have only to program our 
digital computer to imitate it and it will also be a brain.”



  

Self-Referential Software



  

Self-Referential Programs

● If TMs can take other TMs as input, could they take 
themselves as input?

YES. 
● TMs can take their own code as input, and ask 

questions about (or even execute!) their own code. 
● In fact, any computing system that’s equal in power 

to a Turing machine possesses some mechanism for 
self-reference. 

● Want to see how deep the rabbit hole goes? Take 
CS154! 



  

Quines

● A Quine is a special kind of self-
referential program that, when run, 
prints its own source code.

● Believe it or not, it is possible to write 
such a program! 

● See zip file with lecture slides for code.



  

Self-Referential Programs

● Claim: Going forward, assume that any function has 
the ability to get access to its own source code.

● This means we can write programs like the one 
shown here:

bool narcissist(string input) {
    string me = /* source code of narcissist */;

    return input == me;
}



  

Next Time

● Self-Defeating Objects
● Objects “too powerful” to exist.

● Undecidable Problems
● Problems truly beyond the limits of 

algorithmic problem-solving!
● Consequences of Undecidability

● Why does any of this matter outside of 
Theoryland?
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