

Turing Machines
Part Two

Outline for Today

● The Church-Turing Thesis
● How powerful are Turing machines?

● Decidability and Recognizability
● Two notions of “solving a problem.”

● Universal Machines
● A single computer that can compute anything

computable anywhere.
● Self-Referential Software

● Programs that compute on themselves.

The Church-Turing Thesis claims that

every effective method of computation
is either equivalent to or weaker than

a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

 All Languages

Problems
solvable by

Turing
Machines

Regular
Languages

Decidability and Recognizability

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it returns true on w.

● M rejects a string w if it returns false on w.

● M loops infinitely (or just loops) on a string w if when run on w
it neither returns true nor returns false.

● M does not accept w if it either rejects w or loops on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

● A TM M is called a recognizer for a language L
over Σ if the following statement is true:

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)
● If you are absolutely certain that w ∈ L, then

running a recognizer for L on w will (eventually)
confirm this.
● Eventually, M will accept w.

● If you don’t know whether w ∈ L, running M on w
may never tell you anything.
● M might loop on w – but you can’t differentiate between

“it’ll never give an answer” and “just wait a bit more.”
● Does that feel like “solving a problem” to you?

Recognizers and Recognizability

Recognizers and Recognizability

● The class RE consists of all recognizable languages.
● Formally speaking:

RE = { L | L is a language and there’s a recognizer for L }
● You can think of RE as “all problems with yes/no

answers where “yes” answers can be confirmed by a
computer.”
● Given a recognizable language L and a string w ∈ L, running a

recognizer for L on w will eventually confirm w ∈ L.
● The recognizer will never have a “false positive” of saying

that a string is in L when it isn’t.
● This is a “weak” notion of solving a problem.
● Is there a “stronger” one?

Deciders and Decidability

● Some, but not all, TMs have the following
property: the TM halts on all inputs.

● If you are given a TM M that always halts, then
for the TM M, the statement “M does not
accept w” means “M rejects w.”

Accept

Reject
 halts (always)

does not accept

does not reject

Deciders and Decidability

● A TM M is called a decider for a language L over Σ
if the following statements are true:

∀w ∈ Σ*. M halts on w.

∀w ∈ Σ*. (w ∈ L ↔ M accepts w)
● In other words, M accepts all strings in L and

rejects all strings not in L.
● In other words, M is a recognizer for L, and M halts

on all inputs.
● If you aren’t sure whether w ∈ L, running M on w

will (eventually) give you an answer to that
question.

Deciders and Decidability

● The class R consists of all decidable languages.
● Formally speaking:

R = { L | L is a language and there’s a decider for L }
● You can think of R as “all problems with yes/no

answers that can be fully solved by computers.”
● Given a decidable language, run a decider for L and see what

happens.
● Think of this as “knowledge creation” – if you don’t know

whether a string is in L, running the decider will, given
enough time, tell you.

● The class R contains all the regular languages, all the
context-free languages, most of CS161, etc.

● This is a “strong” notion of solving a problem.

R and RE Languages

● Every decider for L is also a recognizer for L.
● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to

a problem, can you necessarily solve that
problem?

 All Languages

R

RE

Which Picture is Correct?

Regular
Languages

 All Languages

R RE

Which Picture is Correct?

Regular
Languages

Strings, Languages, and Encodings

What problems can we solve with a computer?

What is a
“problem?”

Decision Problems

● A decision problem is a type of problem where the
goal is to provide a yes or no answer.

● Example: Bin Packing

You're given a list of patients who need to be seen and
how much time each one needs to be seen for. You're

given a list of doctors and how much free time they have.
Is there a way to schedule the patients so that they can

all be seen?
● Example: Dominating Set Problem

You're given a transportation grid and a number k. Is
there a way to place emergency supplies in at most k

cities so that every city either has emergency supplies or
is adjacent to a city that has emergency supplies?

A Model for Solving Problems

Yep

Nah

Computational
Device

input

A Model for Solving Problems

Yes

Nah

Computational
Device

input

Yep

A Model for Solving Problems

Yep

No

Computational
Device

input

Nah

A Model for Solving Problems

Yep

Nah

Computational
Device

input

A Model for Solving Problems

Yep

Nah

Turing Machine
input

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool someFunctionName(string input) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isAnBn(string input) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isPalindrome(string input) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool isLinkageGraph(Graph G) {

 // … do something …

}

How does this
match our model?

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(accept)

(reject)

bool containsCat(Picture P) {

 // … do something …

}

How does this
match our model?

Humbling Thought:
Everything on your computer is a

string over {0, 1}.

Strings and Objects

● Think about how
my computer
encodes the image
on the right.

● Internally, it's just
a series of zeros
and ones sitting on
my hard drive.

Strings and Objects

● A different sequence
of 0s and 1s gives rise
to the image on the
right.

● Every image can be
encoded as a
sequence of 0s and 1s,
though not all
sequences of 0s and 1s
correspond to images.

Object Encodings

● If Obj is some mathematical object that is discrete and
finite, then we’ll use the notation ⟨Obj⟩ to refer to some
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a file on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute something
about Obj, you can provide the string ⟨Obj⟩ as input to that
Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any
alphabet, we can always find a way of encoding things.

We'll assume we can perform “reasonable” operations on
encoded objects.

⟨ ⟩ = 110111001011…110

Object Encodings

● If Obj is some mathematical object that is discrete and
finite, then we’ll use the notation ⟨Obj⟩ to refer to some
way of encoding that object as a string.

● Think of ⟨Obj⟩ like a file on disk – it encodes some high-
level object as a series of characters.

Key idea: If you want to have a TM compute something
about Obj, you can provide the string ⟨Obj⟩ as input to that
Turing machine.

A few remarks about encodings:

We don't care how we encode the object, just that we can.

The particular choice of alphabet isn't important. Given any
alphabet, we can always find a way of encoding things.

We'll assume we can perform “reasonable” operations on
encoded objects.

⟨ ⟩ = 001101010001…001

Object Encodings

● For the purposes of what we’re going to be doing,
we aren’t going to worry about exactly how objects
are encoded.

● For example, we can say ⟨137⟩ to mean “some
encoding of 137” without worrying about how it’s
encoded.
● Analogy: do you need to know how numbers are

represented in Python to be a Python programmer?
That’s more of a CS107 or CS41 question.

● We’ll assume, whenever we’re dealing with
encodings, that some Smart, Attractive, Witty
person has figured out an encoding system for us
and that we’re using that encoding system.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool containsCat(Picture P) {

 // … do something …

}

Internally, this is
a sequence of
0s and 1s.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool containsCat(Picture P) {

 // … do something …

}

Internally, this is
a sequence of
0s and 1s.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool containsCat(Picture P) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool isLinkageGraph(Graph G) {

 // … do something …

}

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool isDominatingSet(Graph G, Set D) {

 // … do something …

}
How does this

match our model?

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
encoded)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

 // … do something …

}
How does this

match our model?

Encoding Groups of Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ,
we can create a single string encoding all
these objects.
● Intuition 1: Think of it like a .zip file, but

without the compression.
● Intuition 2: Think of it like a tuple or struct.

● We'll denote the encoding of all of these
objects as a single string by ⟨Obj₁, …, Objₙ⟩.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
multiple
distinct
values)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

 // … do something …

}
These form one
large bitstring.

A Model for Solving Problems

Yep

Nah

Turing Machine
input

(possibly
multiple
distinct
values)

(accept)

(reject)

bool matchesRegex(string w, Regex R) {

 // … do something …

}
These form one
large bitstring.

What problems can we solve with a computer?

Time-Out for Announcements!

Problem Set Five Graded

● Your diligent and hardworking TAs have
finished grading PS5. Grades and feedback
will be available on Gradescope later today.

● As always, please review your feedback!
Knowing where to improve is more
important than just seeing a raw score.

● Did we make a mistake? Regrades on
Gradescope will open tomorrow and are due
in one week.

Remaining Problem Sets

● Problem Set 6 will be due on Friday at
5:30 PM.

● Problem Set 7 (our final problem set!)
will be out on Friday at 6:00 PM and will
be due Wednesday, August 14th at 5:30
PM.
● This assignment will be shorter since you

don’t have a full week to work on it.

Final Exam

● If you have exam accommodations, you
will receive an email from Anthony later
today with your arrangement. Please
reach out if you don’t receive it.

● Next Wednesday’s lecture will be a
review session

Back to CS103!

Emergent Properties

Emergent Properties

● An emergent property of a system is a
property that arises out of smaller pieces that
doesn't seem to exist in any of the individual
pieces.

● Examples:
● Individual neurons work by firing in response to

particular combinations of inputs. Somehow, this
leads to consciousness, love, and ennui.

● Individual atoms obey the laws of quantum
mechanics and just interact with other atoms.
Somehow, it's possible to combine them together to
make iPhones and pumpkin pie.

Emergent Properties of Computation

● All computing systems equal to Turing machines
exhibit several surprising emergent properties.

● If we believe the Church-Turing thesis, these
emergent properties are, in a sense, “inherent” to
computation. Computation can’t exist without
them.

● These emergent properties are what ultimately
make computation so interesting and so powerful.

● As we'll see, though, they're also computation's
Achilles heel – they're how we find concrete
examples of impossible problems.

Two Emergent Properties

● There are two key emergent properties of
computation that we will discuss:
● Universality: There is a single computing device

capable of performing any computation.
● Self-Reference: Computing devices can ask

questions about their own behavior.
● As you'll see, the combination of these

properties leads to simple examples of
impossible problems and elegant proofs of
impossibility.

Universal Machines

An Observation

● Think about how you interact with your physical
computer.
● You have a single, physical computer.
● That computer then runs multiple programs.

● Contrast that with how we’ve worked with TMs.
● We have a TM for { anbn | n ∈ ℕ }. That TM will always

perform that calculation and never do anything else.
● We have a TM for the hailstone sequence. That TM can’t

compose poetry, write music, etc.
● How do we reconcile this difference?

Can we make a “reprogrammable
Turing machine?”

A TM Simulator

● It is possible to program a TM simulator on an unbounded-
memory computer.
● You’ve seen this in class.

● We could imagine it as a method

 bool simulateTM(TM M, string w)

with the following behavior:
● If M accepts w, then simulateTM(M, w) returns true.
● If M rejects w, then simulateTM(M, w) returns false.
● If M loops on w, then simulateTM(M, w) loops infinitely.

true!

false!

simulateTM

(loop)

...input...w

M

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

simulateTM

true!

false!

(loop)

...input...

M

w

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

simulateTM

true!

false!

(loop)

...input...

M

w

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

 Tern:
 If Blank Goto Heron
 Write 'q'
 Move Right
 …

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

accept!

reject!

(loop)

...input...

M

w
TM that runs

other TMs

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

 Tern:
 If Blank Goto Heron
 Write 'q'
 Move Right
 …

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

...input...

M

w Universal TM

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

accept!

reject!

(loop)

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the
universal Turing machine that, when run on an input of the form
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of U TM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

 Tern:
 If Blank Goto Heron
 Write 'q'
 Move Right
 …

TM

...input...

M

w Universal TM

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

accept!

reject!

(loop)

UTM does to ⟨M, w⟩

what

M does to w.

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.
● Although we didn’t design UTM as a recognizer, it

does recognize some language.

● Which language is that?

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the
universal TM UTM. This means that

∀x ∈ Σ*. (UTM accepts x ↔ x ∈ ATM)

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the
universal TM UTM. This means that

∀M. ∀w ∈ Σ*. (UTM accepts ⟨M, w⟩ ↔ ⟨M, w⟩ ∈ ATM)

UTM as a Recognizer

● UTM, when run on a string ⟨M, w⟩, where M is a
TM and w is a string, will

… accept ⟨M, w⟩ if M accepts w,

… reject ⟨M, w⟩ if M rejects w, and

… loop on ⟨M, w⟩ if M loops on w.

● Let’s let ATM be the language recognized by the
universal TM UTM. This means that

∀M. ∀w ∈ Σ*. (M accepts w ↔ ⟨M, w⟩ ∈ ATM)

● So we have

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }

The Language ATM

ATM = { ⟨M, w⟩ | M is a TM and M accepts w }
● Here’s a complicated expression. Can you

simplify it?

⟨UTM, ⟨M, w⟩⟩ ∈ ATM.

● Given the definition of ATM and UTM, the following
statements are all equivalent to one another.
● M accepts w.
● UTM accepts ⟨M, w⟩.
● ⟨M, w⟩ ∈ ATM.

 All Languages

RE

A
TM

Regular
Languages

Uh… so what?

Reason 1: It has practical consequences.

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical significance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!

simulateTM

(loop)

M

...input...w

 Auk:
 Move Left
 Write 'k'
 Goto Moa
 …

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical significance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!

simulateProgram

(loop)

...input...w

for (int i = 2;
 i < n; i++) {
 if (n % i == 0)
 …
}

code

true!

false!

simulateProgram

(loop)

...input...w

for (int i = 2;
 i < n; i++) {
 if (n % i == 0)
 …
}

code

● We now have a computer program that runs other computer
programs!
● An interpreter is a program that simulates other programs. Python

programs are usually executed by interpreters. Your web browser
interprets JavaScript code when it visits websites.

● A virtual machine is a program that simulates an entire operating
system. Virtual machines are used in computer security, cloud
computing, and even by individual end users.

● It’s not a coincidence that this is possible – Turing’s 1936 paper
says that any general-purpose computing system must be able to
do this!

Why Does This Matter?

Why Does This Matter?

● The key idea behind the universal TM is that
idea that TMs can be fed as inputs into other
TMs.
● Similarly, an interpreter is a program that takes

other programs as inputs.
● Similarly, an emulator is a program that takes entire

computers as inputs.

● This hits at the core idea that computing
devices can perform computations on other
computing devices.

Reason 2: It’s philosophically interesting.

Can Computers Think?

● On May 15, 1951, Alan Turing delivered
a radio lecture on the BBC on the
topic of whether computers can think.

● He had the following to say about
whether a computer can be thought of as
an electric brain...

http://www.turingarchive.org/browse.php/B/5

“In fact I think [computers] could be used in such a manner that they could be
appropriately described as brains. I should also say that

‘If any machine can be appropriately described as a brain,
then any digital computer can be so described.’

This last statement needs some explanation. It may appear rather startling,
but with some reservations it appears to be an inescapable fact.

It can be shown to follow from a characteristic property of digital computers,
which I will call their universality. A digital computer is a universal machine
in the sense that it can be made to replace any machine of a certain very wide
class. It will not replace a bulldozer or a steam-engine or a telescope, but it
will replace any rival design of calculating machine, that is to say any machine
into which one can feed data and which will later print out results. In order to
arrange for our computer to imitate a given machine it is only necessary to
program the computer to calculate what the machine in question would do
under given circumstances, and in particular what answers it would print out.
The computer can then be made to print out the same answers.

If now some machine can be described as a brain we have only to program our
digital computer to imitate it and it will also be a brain.”

Self-Referential Software

Self-Referential Programs

● If TMs can take other TMs as input, could they take
themselves as input?

YES.
● TMs can take their own code as input, and ask

questions about (or even execute!) their own code.
● In fact, any computing system that’s equal in power

to a Turing machine possesses some mechanism for
self-reference.

● Want to see how deep the rabbit hole goes? Take
CS154!

Quines

● A Quine is a special kind of self-
referential program that, when run,
prints its own source code.

● Believe it or not, it is possible to write
such a program!

● See zip file with lecture slides for code.

Self-Referential Programs

● Claim: Going forward, assume that any function has
the ability to get access to its own source code.

● This means we can write programs like the one
shown here:

bool narcissist(string input) {
 string me = /* source code of narcissist */;

 return input == me;
}

Next Time

● Self-Defeating Objects
● Objects “too powerful” to exist.

● Undecidable Problems
● Problems truly beyond the limits of

algorithmic problem-solving!
● Consequences of Undecidability

● Why does any of this matter outside of
Theoryland?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

